Using the Hypno 2: Performance Mode

As previously stated, the face of the Hypno features two sliders, three buttons, and six dials. For convenience, through this manual, I will refer to the two sliders as A & B (left to right) and the three buttons as A, B, & C (left to right). For the dials I will refer to the four at the top as A, B, C, & D (left to right) and the two in the center as E & F (middle to bottom). The Hypno has several modes of operation that are accessed by holding down (or not holding down) buttons. I will refer to the mode where no buttons are being held down as performance mode.

image from Sleepy Circuits.

To get started with the Hypno, let’s not use any input, and just use it to generate video using its two video oscillators. The module is symmetrical, so the controls on the left (slider A, button A, and dials A & B) generally control the first oscillator, while the controls on the right (slider B, button C, and dials C & D) control the second oscillator. The controls in the middle (button B and dials E & F) generally control the module as a whole.

Buttons A & C set the shape for the two oscillators. Pressing the buttons cycles through the shapes, sine, tan, poly, circle / oval, fractal noise, and video input. These shapes are coded with the color of corresponding LED (red, green, yellow, blue, pink, and teal). The last setting, teal / video input, is only accessible when a USB video input is plugged in. We’ll deal with the video input shape in a later tutorial. While the manufacturer refers to the first two shapes as sine and tan, they both are essentially lines. The polygon shape is a septagon by default.

RedSine
GreenTan
YellowPolygon
BlueCircle / Oval
PinkFractal Noise
TealVideo Input



A silent video demonstration of the five basic shapes in Hypno.

Sliders A & B set what the manufacturer calls frequency, but perhaps it is better understood as a zoom function. The zoom feature can be very useful when you are first getting used to the Hypno. Zooming in completely, that is pulling the slider all the way to the bottom can make a video layer disappear, so you can better see the effect of each control. Dials A & D rotate the selected shapes, and dials B & C control the polarization of the shapes. When polarization is low, the shapes appear normal. As polarization increases, the shapes start to bend until they completely wrap around, forming concentric circles. However, it should be noted that for the polygon, circle / oval, and video input shapes, dials B & C function as Y (vertical) offsets.

A silent video demonstration of the zoom, rotate and polarization / y offset controls on the five basic shapes.

The remaining two dials (E & F) control both oscillators. The former controls the gain of each shape, with the center position resulting in a black out of both layers. The latter dial controls affects the colors of the two layers, shifting the relationship between the hues of the two layers. At this point you should understand the basic shapes and controls in performance mode for the Hypno. Notice however, with the controls we have introduced thus far, there is no movement on its own. That is the shapes only change when a control (button, slider, or dial) is changed.

Here is the Sleepy Circuits quick guide for performance mode (they call it shape pages) . . .


video by Sleepy Circuits

Using the Hypno 3: Modulation Mode

Using the Hypno 1: Connections

The Sleepy Circuits Hypno is a video synthesizer that can generate video using two video oscillators that generate a variety of shapes shapes. Each video oscillator can be manipulated using a series of buttons, sliders, and dials. The Hypno can also accept video input via USB for each of the two video oscillators, allowing it to manipulate video (live or pre-recorded) in real time. Sleepy Circuits has a lot of great info about how to use the Hypno spread between the manufacturer’s website and their YouTube channel. However, in my opinion, they lack a single resource that functions like a full manual taking you through how to use the Hypno from beginning to end. I hope to do this in a few blog entries.

Let’s start off by looking at inputs and outputs. The back face of the Hypno features four USB inputs that can be used for connecting cameras, capture cards, USB drives, and MIDI instruments. The right hand side of the module features an HDMI out, a composite out, and a micro USB port which is used to power the unit. The Hypno is a bit picky in terms of the order you plug things in. You should always plug in the HDMI out before plugging in the power. When you plug in the power, you will notice that the Hypno goes through a boot up process. Note that there is no power switch, so turning the unit on and off is done through plugging it in and unplugging it. If you are going to use any USB input, you would plug that in third, after plugging in the power.

image from Sleepy Circuits.

image from Sleepy Circuits.

The face of the Hypno features two sliders, three buttons, and six dials. Since each of these fulfills several functions, none of them are labelled. The face also has nine 3.5mm TS sockets for use with Eurorack and Eurorack compatible gear. These nine ports can be used to control / automate the two sliders, two of the three buttons, and five of the six dials. We’ll spend more time dealing with this in a future post. However, if you plan on using these Eurorack connections, you will want to connect them after connecting power.

image from Sleepy Circuits.

At this point, you should be able to correctly connect the Hypno to inputs, outputs, and power in the correct order.

Using the Hypno 2: Performance Mode

Digital Innovation Grant

I’m pleased to announce that myself and Professor Katherine Elia-Shannon from Stonehill College’s Communication Department have been awarded a Digital Innovation Grant from the Digital Innovation Lab at the MacPháidín library. The grant will continue my investigation of video synthesis that I started using the Critter and Guitari EYESY from my previous Digital Innovation Grant. This time around I will be using the Sleepy Circuits Hypno.

The Hypno generates video in realtime, and features four USB inputs with an HDMI output. The core of the video generation is two video oscillators that generate what Sleepy Circuits call shapes. These two shapes are superimposed over each other. Various parameters, such as shape, frequency, rotation, and polarization can be controlled for each video oscillator. Likewise, there are global parameters that can be manipulated such as gain, hue, saturation, feedback. These parameters can also be controlled via MIDI over USB or via control voltages from a Eurorack compatible modular synthesizer. In addition to the internal shapes offered by the video oscillators, the Hypno can accept video input via USB as a shape for each of the two video oscillators, allowing the user to manipulate live or pre-recorded video in real time.

The first step will be to create a series of blog entries that explain the various features of the Hypno. This post will be aided by the vast resources on the YouTube channel for Sleepy Circuits. After that, I plan on making music videos for the four pieces on my most recent album, Point Nemo. I will also be teaching the features of the Hypno to Professor Katherine Elia-Shannon and her students for them to use in an assignment.

The first batch of equipment, the Hypno and a power cable, arrived this past week. In July the second half of the grant funding will payout, so at that stage I will be purchasing accessories to use with the Hypno. Stay posted for updates!